

An Architecture for Concurrent Future Networks

Future Internet 2008 Karlsruhe, 11.11.2008

Lars Völker, Denis Martin, Ibtissam El Khayat, Christoph Werle, Martina Zitterbart (Universität Karlsruhe (TH) / Ericsson GmbH)

Motivation

- 4WARD-Project: "Let 1000 networks bloom"
 - Network Virtualization
 - Vast amount of (virtual) networks
 - User might have multiple Networks side-by-side
- How can we do this?
 - How can we run multiple networks?
 - What must a node look like?
 - How do we connect an application to the correct network?
 - What about Security, QoS, and Mobility?
 - Rapid creation of such networks?

Definitions

- ❖ Just to make life easier for us ...
 - Network Architecture A common understanding within a network.
 Usually involves common protocols as well as naming and addressing.
 - Network Architect Designer of networks and/or network architectures.

11/11/2008

GI/ITG Future Internet 2008 Karlsruhe

WP2/Slide 3

Structure of this talk

- Motivation
- Definitions
- Node Architecture at a glance
- Important Concepts of the Node Architecture
- Node Architecture put together
- Rapid creation with the Design Process
- Conclusion and Outlook

Node Architecture at a glance

- Simplified version
- Netlet as Protocol Container
- Architecture-specific Multiplexer
- Network Access
 - Virtual or physical Networks
 - Network Access Manager

11/11/2008

GI/ITG Future Internet 2008 Karlsruhe

WP2/Slide 5

The Netlet – A container for Future Internet protocols

- ❖ Netlet (≈ Protocol Stack)
 - Is usually based on one Network Architecture
 - Fits usually just one Network Architecture
 - NAI has to be compatible to Network Architecture
 - Could be build many different ways:
 - Writing Code, Code Generation, 3rd party, Composition, ...
 - "Interop Netlet" connects multiple
 Network Architectures

Application Interface – Moving forward from the Socket API

- Today's interfaces to the applications (e.g. Socket API) have drawbacks
 - Peer is described by address and not by name
 - Usually simple name resolution rule (e.g. IPv6 first, IPv4 second)
 - With 1000 networks, choice of the network important!
 - Applications might have requirements on communication!
 - Please protect this connection

Needed changes:

- Move name resolver from application to system
- Allow application to influence choice of network with requirements

11/11/2008

GI/ITG Future Internet 2008 Karlsruhe

WP2/Slide 7

Network Access Interface – Transparently support Network Virtualization

- With 1000 networks, many of them will be virtual networks!
 - That means: Virtual Networks won't be special
 - Possibly the common case

The Network Access Interface

- Hides the differences of physical and virtual networks
- Supports the description of the underlying network
 - e.g., latency, energy consumption, cost
 - Triggers of network events
 - So the selection of Netlets could also be based on the network properties

Automatic Selection – Choosing the best Netlet

With "1000 networks" the user cannot just manually choose the network!

❖ Idea:

- Let application, user, and administrator describe requirements/goals
- Description of underlying network
- "Estimate" the Netlet's behavior
- Rank the Netlets based on this
- This is based on Multi Attribute Utility Theory (MAUT) and [1]

[1] Lars Völker, Christoph Werle, Martina Zitterbart, *Decision Process for Automated Selection of Security Protocols*, 33nd IEEE Conference on Local Computer Networks (LCN 2008), IEEE, p. 223–229, Montreal, QB, Canada, Oct 2008.

11/11/2008

GI/ITG Future Internet 2008 Karlsruhe

WP2/Slide 9

Criteria

- ❖ To determine what's best we need to describe Netlets!
- We looked at several criteria, here some examples

Calculating total value

How to aggregate the criteria to overall utility:

$$v(a_i) = \sum_{j=1}^{m} w_j * v_j(c_j(a_i))$$

Meaning	Abbreviation
Alternative i	a_i
Criterion j	c_j
Weight for criterion j	$ w_j $
Attribute value of a_i with regard to criterion c_j	$c_j(a_i)$
Value function for criterion c_j	v_j
Total value of alternative a_i	$v(a_i)$

11/11/2008

GI/ITG Future Internet 2008 Karlsruhe

WP2/Slide 11

Value Functions

- Function to "translate" the individual criteria's values to a (generic) utility
- This function has to fit to the criterion
 - Each criterion could have a specific value function
 - It should be adaptable

A possible Value Function for Latency

Strength of Security!?

- Determine Effective Bit Strength (EBS) of involved cryptographic primitives:
 - Authentication, Key Exchange, Encryption, Message Authentication
 - Aggregate those EBS values using the Min-Function
 - EBS → Utility Value
 - Value is not linear for most users

11/11/2008

GI/ITG Future Internet 2008 Karlsruhe

WP2/Slide 13

Influencing the Decision Process

- Value functions
 - Can be replaced and/or adjusted
- Weights
 - Put criteria into proportion
- Requirements
 - Describe which values are ok for criterion
 - Works also for qualitative criteria

Design Process – Accelerating the Creation of Netlets

- Iterative process aiding the future network architect to design new networks
- The network architect will start with his own requirements and will refine them during the process
- He will derive a Blue Print for the network architecture's components and functionalities
- ❖ With this Blue Print
 - Components of the network architecture can be implemented (if not using standard components already existing on the market)
 - Network topologies can be designed by network administrators

Conclusion / Benefits

- Create a new network architecture if needed
 - Every virtual network can have their own
 - You could even have applications come with their own
 - Has to be a simple process!
 - The Design Process enables this
- Netlets can be treated as almost arbitrary black boxes
 - Approaches like RNA and SILO can run in a Netlet
 - We try to not introduce too many invariants
 - Allow for future development
- Choosing the Netlet and Network Architecture dynamically

Thank you for your attention

The Project Website: http://www.4ward-project.eu/

SEVENTH FRAMEWORK

11/11/2008

GI/ITG Future Internet 2008 Karlsruhe

WP2/Slide 19